
D I S T R I B U T I O N  O F  D I F F U S I N G  

AN A B S O R B I N G  W A L L  

I .  I .  L i t v i n o v  

PARTICLES NEAR 

On the bas i s  of Bo l t zmann ' s  kinetic equation we obtain and solve numer i ca l ly  the exact  d i f -  
fusion integral  equation for the dis t r ibut ion of pa r t i c l e s  which is valid throughout the whole 
region of t r ans i t ion  f r o m  macroscop ic  to kinetic descript ion.  It is shown that  in spite of 
s t rong d is tor t ion  of the angular  p a r t  of the dis tr ibut ion function, the behavior  of the densi ty 
at the wall  v a r i e s  l i t t le  by compar i son  with the diffusion distr ibut ion.  

To desc r ibe  the behavior  of the pa r t i c l e s  in a neut ra l  gas  and p l a s m a ,  the typica l  d imension L ofwhich 
signif icant ly exceeds  the mean f r ee  path  k, a m a c r o s c o p i c  diffusion equation [1] is usual ly  used.  But such 
equations a r e  inappropr ia te  in the boundary l a y e r s  nea r  the wall of th ickness  of the o rde r  of k (Knudsen's  
k - l a y e r  [2]), where  the d i sc re t e  s t ruc tu re  of the medium becomes  apparent .  St r ic t ly  speaking,  a kinetic 
descr ip t ion  is n e c e s s a r y  here .  S imi lar  p rob l ems  in the t rans i t ion  f rom a mac roscop i c  descr ip t ion  in the 
internal  region to a kinetic descr ip t ion  in the boundary l aye r s  also occur  in the theory  of radia t ion  t r a n s p o r t  
in gases  [3, 4]. 

The kinetic approach  within the l imi t s  of the X- layer  is usual ly  used  to desc r ibe  the f ict i t ious m a c r o -  
scopic  boundary conditions at the wall,  for  example ,  for  the diffusion equation, the solution of which would 
coincide with the t rue  solution outside the k - l a y e r  to some  degree  of accuracy .  

The s imp le s t  boundary condition for a p l a s m a  at  the wall  is Schot tky 's  condition [5] n w = 0, which was 
used  to desc r ibe  ambipo la r  diffusion. A s i m i l a r  condition was used by Tonks [6] to desc r ibe  the diffusion 
of a p l a s m a  in a magnet ic  field. A more  exact  boundary condition, taking into account  the finite ra t io  k /L ,  
was deduced by de Groot  [7] and then, with a number  of r e f inemen t s ,  used by Fabr ikan t  [8] in p rob l e ms  con-  
cern ing  radia t ion  t r a n s p o r t  in a p l a s m a  and by Granovski i  [9] to desc r ibe  ionic diffusion in a pos i t ive  col -  
umn when the re  a r e  e l ec t r i c  f ields.  

But these  boundary conditions, obtained in the diffus ion approximat ion,  a r e  not exact  because  of the 
comple te  breakdown of the well-known c r i t e r i a  for  the diffusion descr ip t ion  in the neighborhood of the k -  
l aye r .  Hence, before  d iscuss ing  the appl icabi l i ty  of these  r e su l t s  when there  a r e  e lec t r i c  and magnet ic  
f ields,  we have to obtain an answer  to the fundamental  quest ion of the exac tness  of these  boundary condi-  
t ions for  s imple  pa r t i c l e  diffusion. To do this ,  we f i r s t  d i scuss  the pa t t e rn  of the phenomena in the neigh-  
borhood of the k - l a y e r ,  and then, on the bas is  of Bo l t zmann ' s  kinetic equation, we deduce and solve n u m e r -  
ically the exact  diffusion integral  equation for  the pa r t i c l e  densi ty and the pa r t i c l e  dis t r ibut ion function 
which is val id throughout the whole t rans i t ion  region.  Then we compare  both solutions.  

1. Boundary  conditions and the Density Distr ibut ion in the Diffusion Approximat ion.  we  consider  the 
s imp le s t  case  of the two-dimens iona l  s t a t ionary  diffusion of pa r t i c l e s  against  a fixed homogeneous back -  
ground of sca t t e r ing  cen te r s  when there  is an absorbing  boundary at  x = 0. When the flux is constant  (j(x) = 
- I ) ,  the densi ty  dis t r ibut ion in the diffusion approximat ion  has the f o r m  

n (x )  = I ( 1 . 1 )  -b- x + n ,  
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The boundary condition for n w follows f rom the fact that the flux ac ross  the boundary of the k - l aye r  
is equal to that at the wall, Jw [8]. 

The par t ic le  fluxes are  usually computed by the mean free path method [1]. Its basis in Bol tzmann 's  
kinetic equation is given in the next section.  

In the general  case of l inear  or  three-dimensional  Part icle  flight the directed fluxes have the form 

1+_ = ~_ ]o -~ 1/~jD (/D = --Ddntdx) (1.2) 

in which the random fluxes J0 are ,  respect ively ,  (1/2)nv and (1/4)nv, and the diffusion coefficients a re  D = Xv 
and (1/3) Xv. 

It is easy to see that in this approximation the fluxes j . (x)  are  equal to the random fluxes at c r o s s -  
sections at the distance of the mean free diffusion path k D (respectively,k or  (2/3)X [9]) f rom x. 

By [8, 9] we can take the c r o s s  section x = XD as the boundary of the X-layer .  Then, assuming the flux 
ac ros s  this section is equal to the diffusion flux, while the flux at the wall, Jw, is directed,  and ignoring the 
change in dn/dx over  the length XD, at the wall we have 

n~  = ~.Ddn/dx (1.3) 

But, since, by the foregoing, Jw = - j 0  (XD), the above-mentioned matching of the fluxes is equivalent 
to saying that the fluxes J0 and JD are  equal at the diffusion boundary x = XD, for which 

n r  = 2)~Ddn/dx (1.4) 

Although (1.3) and (1.4) are  equivalent in the l inear approximation, as we shall see in the sequel, (1.4) 
more  closely cor responds  to the true situation since it holds at the boundary between two zones at a given 
distance f rom the walI. 

Noting (1.3), (1.4), we can put (1.1) in the form 

n ~ ( z )  = 1-~  x~ ( 1 . 5 )  

Thus, in the neighborhood of the X-layer  the typical scale of the density is of the o rder  of k, the dif-  
fusion flux no longer being smal l  by compar ison with the random flux. The e r r o r  thus committed can be 
determined only after comparing the distribution (1.5) with the exact kinetic solution. 

2. The Kinetic Equation for  the Par t ic le  Distribution in the Transi t ion Layer .  As we know [2], 
Bol tzmann's  equation 

al o! F al a--; + v - ~  § - E ~ "  = ],t (2.1) 

where 

can be put in equivalent integral  form.  In the two-dimensional  s ta t ionary case and in the absence of external 
forces ,  its solution has the form 

i x  x 

oc o Xo ~ '  

(2.2) 

Here the initial c ross  section x 0 for v x < 0 is taken to the left of x, while for v x < 0 it is taken to the 
right.  The above express ion descr ibes  the obvious fact that the number of par t ic les  in a given velocity band 
v, dv at x is equal to the number of par t ic les  on the t r a j ec to ry  through x 0 (taking into account their  decrease  
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due to collisions) plus those par t ic les  which entered it along the path and reached x without collision. If 
we take the c ross  section x 0 far f rom x, the f i r s t  t e rm in (2.2) drops out. Hence, in this case the form of the 
initial distribution functionf(x0,  v) is not significant because of the s t rong damping along the length. 

For  the sequel we actualize the f o r m  of the coll ision integral.  Since by the foregoing the scat ter ing 
centers  are  assumed to be fixed, the collision integral  can be significantly simplified: 

J~' = no I [/(v') --  / (v)] v5 (v, @) do (2.3) 
o 

where n o is the density of the scat ter ing centers .  

The integral  J2 in (2.3) is found at once 

�9 4 = noV~o (v) = 1/~ (v) (2.4) 

where a0(v) is the complete scat ter ing c ross  section. 

Then the solution of (2.2) takes the form 

i x-- 2: t / (x, v) = - f  
xo 

(2.5) 

If we now multiply both sides of (2.5) by v x and integrate with respec t  to v, we find the flux cross ing  
the c ross  section x 

x 

v x  

(2.6) 

It is easy to see that (2.6) coincides with the express ion obtained on the basis  of the mean f ree  path 
method [1], where 

J1 (x', v) = x (x', v) 
"r 

In the general  case the distribution function for the sca t tered  par t ic les  X (x', v) depends on their  d i s -  
tribution before co l l i s i on f (x ' ,  v) and the actual form of the scat ter ing c ross  section a(~) .  But for a c ross  
section of elast ic spheres ,  when the par t ic les  are  sca t tered  uniformly over  the sphere Iv[ = const, the func-  
tion X(x', v) becomes isotropic and is determined by the average number of par t ic les  over  the sphere.  Hence, 

] , ( x ' , v ) =  t I ] (x', v) do (2.7) 
o 
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A s s u m i n g  fu r t he r  tha t  the d i s t r ibu t ion  of v is monoene rge t i c  and in tegra t ing  (2.5) with r e s p e c t  to v, 
we obtain an in t eg ra l  equat ion fo r  the p a r t i c l e  dens i ty  of  this  g roup  

x - -  ~ t  n ( x ) = ~ i S n ( x , ) e x p ( _ ~ )  dx'd~ 
~. cos 0 (2,8) 

w h e r e  0 is the angle between the ve loc i ty  v and the X axis .  

Having d e t e r m i n e d  n(x), we can then find the angu la r  d i s t r ibu t ion  funct ion 

t dn 

/ (~)  = ,, d a  

If X is independent  of  v, Eq.  (2.8) is a l so  sa t i s f ied  by the tota l  p a r t i c l e  dens i ty .  

Then,  in t eg ra t ing  (2.8) with r e s p e c t  to ~2 and t r a n s f o r m i n g  to d i m e n s i o n l e s s  coo rd ina t e s  x c = x /k  and 
z = I x - x ' l / k ,  we r e d u c e  the equat ion to the f o r m  

Xo oO 

n (x  ~ = -~-  
0 0 

(2.9) 

w h e r e  the ke rne l  El(z) is the exponent ia l  in t eg ra l  [4, 10]. 

In the s a m e  way,  taking (2.8) and (2.9) into account ,  we have fo r  the angu la r  p a r t  of  the d i s t r ibu t ion  
funct ion 

(X~ O, oeJ) 

t f n (x ~ --  t cos 0) e -tdt i ( z  ~ o) = 2,, (x o) 
o 

(2 o10) 

in which t = z I sec  0 I. Here  the f i r s t  upper  l imi t  is t aken  fo r  0 -< 0 < 1/2~ and the second  fo r  i/2 ~-< 0 <~. 

3. N u m e r i c a l  Solutions of  the Above Equat ions  and D i s c u s s i o n  of Resu l t s .  It fol lows f r o m  the f o r m  
of (2.9) tha t  the so lu t ion  of  tha t  equat ion m a y  dif fer  by a cons tan t  f a c t o r  p r o p o r t i o n a l  to the flux I at  the wal l .  
At  l a rge  d i s t ances  f r o m  the wal l  x ~ >> 1, the solut ion mus t  b e c o m e  l inea r ,  the t r u e  g rad ien t  being e s t ab l i shed  
v e r y  s lowly  fo r  x ~ >> 1 because  the fac to r  El(z ) d e c r e a s e s  r ap id ly .  Hence the c o r r e c t  choice  of  the z e r o -  
o r d e r  app rox ima t ion  is v e r y  impor t an t  when (2.9) is so lved  by i t e ra t ion .  

As a v e r y  exac t  ini t ial  app rox ima t ion  fo r  x ~ >> 1 we can take  the diffusion d i s t r ibu t ion  (1.5) 

n ~ = i § 3/2 x ~ (3.1) 

It is interesting to note that for linear flight, when we obtain an equation of the type (2.9) with kernel 
e-Z, the zero-order approximation (1.5) in the form n ~ 1 + 2 ~ is the exact solution, as we easily see by direct 
substitution. 

The numerical solution of (2.9) converges rapidly by iteration from the approximation (3.1) (Fig. i). 

Thus, by the second iteration the density at the origin n~ (0) is greater than the exact value n~o(0) = 0.855 by 

not more than 0.65%, and the sixth iteration yields an accuracy at the origin of not worse than g = 10 -4, and 
perturbation of the solution with respect to 2 ~ for a given accuracy extends to not more than 4 or 5 digits. 

When x~ 0.5 the solution is slightly larger than the approximation (3.1). 

Judging from Fig. i, the discrepancy between the diffusion distribution and the exact distribution is 

not more than 15% even at x =0. This approximation is virtually exact outside the X-layer when the boundary 
condition (1.4) holds at its boundary. But the solution for linear particle flight is also exact inside the k- 

layer. 

With the aid of (2.10) we can then compute the angular distribution function (Fig. 2) from the solution 
n~ We compare it with the distribution in the diffusion approximation. Assuming both limits in (2.10) 
to be infinite and transforming to dimensional variables, we obtain the diffusion approximation 
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/~ ~ dn "~ ~ , - ~ r  (3.2) l(~,o)= ~-  

The las t  t e r m  in (3.2) is a m eas u re  of the deviat ion of the dis tr ibut ion f r o m  the equi l ibr ium value.  
Compar ing (3.2) with the exact  solution, we note that  for  pa r t i c les  moving towards  the wall  (cos O <0), they 
differ  insignif icantly in the X- layer ,  while for  cos 0 > 0 the distort ing effect  of the wall  is smal l ,  pa r t i cu l a r ly  f r o m  
a smal l  dis tance f r o m  the wall  (x ~ sec  0 f 1). But even for  x ~  1 this d i f ference is insignificant,  while for  x ~ = 
2 both dis t r ibut ions coincide v i r tua l ly  complete ly .  

That  the app rop r i a t enes s  of the diffusion approximat ion  is good in this case,which is fa r  f r o m  equi l ib-  
r ium, can be explained by two r ea sons .  The f i r s t  is that  the fo rm of the function ~ (x' v) p lays  a significant  
ro le  here ,  r emain ing  spher ica l ly  s y m m e t r i c  for  the chosen sca t te r ing  law and any an iso t ropy  of the d i s t r ibu-  
tion function. If the s c a t t e r i n g  law depar t s  f r o m  the model of e las t ic  spheres ,  the a c c u r a c y  of the approx i -  
mation d e c r e a s e s  in the k - l a y e r .  

The second r e a s o n  is as follows. By (1.3) and (1.4) the density mus t  fo rma l ly  vanish  at a dis tance 
k D beyond the wall .  Posit ioning the wall  at  x = 0 so as to be opaque to pa r t i c l e s  f rom the left and abso rb  
pa r t i c l e s  f r o m  the r ight  r e s u l t s  in the des t ruct ion of the mechanism for  fo rming  the fluxes j~ near  it. But 
the per turba t ion ,  as s imple  e s t ima te s  show, cannot exceed  15-20% because  of the sma l lnes s  of the density 
on the left,  which is conf i rmed  by the numer i ca l  r e s u l t s .  

The author wishes  to thank M. N. Kogan for  useful  d iscuss ions .  
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